MFOM protocol review

Katherine Venables

Chief Examiner (Research Methods) Faculty of Occupational Medicine

Processes

Dissertations: process reminder

- Supervisor =educational supervisor, or other(s)
- **Protocol** and Form M2 (standard dissertations)
- FOM obtains two independent advisory reviews

 Rapid feedback; formative, not summative
- Final submission and Form M3
- FOM obtains a joint assessment_by two assessors
 - Accept
 - Minor revisions
 - Major revisions & reassessment
 - Reject
- In difficult cases
 - Additional assessors, vivas
- Appeals process

FOM assessors

Supervision checklist for standard dissertations

- Educational supervisor
- Project supervisor (if different)
- Any contributors to the project (eg statistician, hygienist, data manager, technician, other)
- Confirmation of adequate resources for project (by educational supervisor's signature)
 - Library and library support
 - Data management/IT support
 - Statistical support
 - Other technical support
 - Assistance in obtaining ethical approval
 - Other permissions (eg to use a database, mail a questionnaires, access data etc)
 - Training necessary for the candidate to complete the project
 - Any necessary project expenses (eg mailing)
 - Any other resources needed to complete the project

Preparations in year 1

- Read FOM web links
- Choose general topic
- Begin literature review and reference management
- Agree academic supervision: by educational supervisor, MSc supervisor, other academic supervisor
- What additional advice or collaboration is needed? (eg statistical advice, occupational hygiene)
- Consider attending relevant course(s)
- Refine topic and specific objectives of research during discussions with supervisor
- Submit for ethics approval, if required
- Obtain other permission(s) required (eg to use data or facilities belonging to employer)
- Agree outline timetable with educational supervisor
- Apply for any funding or resources needed

Protocols for standard dissertations

- 1,000 words limit
- Aims
- Background (context, justification)
- Study design
- Methods for data collection
- Outline of statistical methods (if any), including any power calculations
- Ethical issues (if any)
- Resources required (eg access to data, training, advice, collaboration, consumables, travel)
- Likely areas of policy or practice where work will lead to recommendations

Protocol review proforma

- Scope
- Relevance
- Question
- Study design
- Methods of data collection
- Presentation of results and approaches to statistical analysis

- Ethical issues
- Permissions and resources
- Feasibility
- Major revisions
- Resources
- Other suggestions

What is the question?

What is the question?

- Engage the trainee's imagination
- Relevant to the training organisation
- Is the "question" a question, or a design/ method? eg:
 - "Study how the pass-rate of (a test of a work competency) changes with age"
 - Should older workers' competency be assessed more frequently than that of young workers? Competency to do what task, and to prevent what adverse outcome?

How will you set about answering the question?

Ways of answering questions

- Literature review ± meta-analysis
- Observational study
 - Survey of current practice and expert opinion
 - Epidemiological study
 - Longitudinal
 - Cross-sectional
 - Case-control
 - Qualitative study
- Intervention/evaluation study ± economic evaluation
 - Experimental
 - Non-experimental
 - Clinical audit

March, 2012

Should older workers' competency be assessed more frequently than that of young workers? Examples

- Intervene (ie assess them more frequently) and evaluate the outcome
- Literature review ± theoretical simulations
- Follow-up of a work cohort as it ages
- Survey of variation by age in current workforce
- Comparison of age distribution in cases of competency "failure" and controls
- Survey of SOM members
- Qualitative interviews eg of managers, experts, workers

How will you cover the basic FOM research competencies?

Which competencies will your dissertation cover?

Comparison <u>+</u> test

Strengths of experimental design

Random allocation into sub-groups

Inclusion of untreated control subjects

Double-blind observation

Basic epidemiological design Exposed group **Wival** SQ Selection & urvival Target જ population Selection

FOM assessors

Comparison

group

Comparison <u>+</u> test

X-section

Selection and survival

- Selection into a job
 - Workplace factors
 - Worker factors
- "Survival" in a job
 - Workplace factors
 - Worker factors

- Selection into a study
 - Availability of records
 - Participation
 - organisations
 - Individuals
 - Selection criteria
 - inclusion
 - exclusion

Longitudinal and case-control designs

Longitudinal vs case-control design

 Longitudinal – how common is the disease of interest amongst the exposed, relative to unexposed?

 Case-control – how common is the exposure amongst cases with disease, relative to non-cases?

What do you know about your topic?

A REVIEW GROUP OF

THE COCHRANE

B

5. Re-evaluate

practice

COLLABORATION*

Medical

Council

MRC

Research

Is there an accepted study design or method?

http://osh.cochrane.org/

- http://www.bmj.com/
 - eg How to read a paper
 - eg Clinical management guidelines
- http://www.nres.npsa.nhs.uk/
- http://www.nice.org.uk/
- <u>www.mrc.ac.uk/complexinter</u> <u>ventionsguidance</u> FOM assessors 2

March, 2012

4. Recommend

and implement

change

1. Establish

standards of good practice

2. Measure

current

practice

3. Analyse and

give feedback

Networking for niche topics

- FOM database of MFOM abstracts
- Special interest groups
 - eg ANHOPs
 - eg ALAMA
- Industry/employer groups
- SOM, FOM, RSM meetings

What data will you collect?

Types of variable

• Determinant

– eg exposure, OH intervention

- Outcome
 - eg disease, sickness absence
- Modifying variables, including confounders

 eg age, sex, smoking

Measurement of variables

- Time relations?
- Natural format/scale of the variable
- Definitions
 - Concrete, unambiguous
- Independent data collection
- Information quality
 - Valid, repeatable
- Procedures
 - Acceptable, safe, practicable

Occupational exposure indices

- Body burden eg kidney cadmium
- Measured personal exposure eg radiation film badges
- Area measurements eg asbestos fibre counts
- Modelled/estimated exposure
- Job-exposure matrices
- Ordinal scales of exposure
- Categories eg job titles
- Duration of job
- Ever/never worked in industry

Validity and repeatability of chosen index

Validity and repeatability of chosen index

- Validity: does the index measure what it is supposed to measure?
 - eg criterion validity compared with the "gold standard"
 - eg consensus validity

 Repeatability: does it give similar findings on different occasions?

Minimising unwanted variation

- Subject
 - Design study to minimise sources of variation eg do tests at same time of day
- Instrument
 - Same instrument, calibration, adjustment
 - Use average of repeated tests
- Observer
 - Eliminate where possible, simple instructions, training

Planning and organisation?

Speculate about the likely study findings

- Implications of range of likely findings
- Skeleton tables and figures
- Headings & sub-headings (IMRAD)
 - What did I do?
 - How did I do it?
 - What does it mean?

It is never too early to think about document presentation

- Word limit 10,000 words
- Referencing software
- Indexing
- Pagination
- Appearance of tables and figures
- Photographs
- English style, grammar, spelling

Timetabling

- Preparations
- Outline protocol \rightarrow FOM
- Data collection and analysis
- Drafting
- Final drafting
- Assessment by FOM
- Revision, resubmission

Reserve slides

FOM research competencies: knowledge

Be able to understand:

- How to design a research study.
- How to use appropriate statistical methods.
- The principles of research ethics.
- How to write a scientific paper.
- Sources of research funding.
- The principles and application of epidemiological methods in research and in problem solving
- The application of medical statistics and the interpretation of statistical analysis methods in scientific research.
- Computer based systems for data collection and analysis.
- Ethical considerations in research.

FOM research competencies: skills

- Be able to define a problem in terms of needs for an evidence base.
- Be able to undertake systematic literature search.
- Be able to undertake a systematic and critical appraisal and review of scientific literature.
- Be able to produce an evidence based digest of the literature.
- Be able to frame questions to be answered by a research project.
- Be able to develop protocols and methods for research.
- Be able to execute an appropriate study design.
- Plan data collection for simple surveys including sample selection and methods of recording and storing data.
- Be able to use databases.
- Be able to accurately analyse data statistically.
- Have good written and verbal presentation skills.
- Present investigation and results in the format of a research based report.
- Be able to write a scientific paper for peer-reviewed publication.

FOM research competencies: attitudes

- Demonstrate curiosity and a critical spirit of enquiry, and where appropriate a critical attitude towards current practice.
- Acceptance of the need for critical review and for research so as to found a solid base for good practice.
- Ensure patient confidentiality.
- Demonstrate knowledge of the importance of ethical approval and patient consent for clinical research.
- Respect individual confidentiality when presenting data.
- Disposition to cooperation and liaison with statisticians and other research colleagues.